Search alternatives:
values decrease » values increased (Expand Search), largest decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
values decrease » values increased (Expand Search), largest decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
-
1201
Image 2_Changes in the gut microbiome due to diarrhea in neonatal Korean indigenous calves.jpeg
Published 2025“…However, Proteobacteria increased and Bacteroidetes and Actinobacteria decreased in calves with diarrhea. In addition, calves with diarrhea showed a significant decrease in the diversity of the gut microbiome, especially for anaerobic microorganisms Faecalibacterium prausnitzii, Gemmiger formicilis, and Collinsella aerofaciens. …”
-
1202
Image 1_Changes in the gut microbiome due to diarrhea in neonatal Korean indigenous calves.jpeg
Published 2025“…However, Proteobacteria increased and Bacteroidetes and Actinobacteria decreased in calves with diarrhea. In addition, calves with diarrhea showed a significant decrease in the diversity of the gut microbiome, especially for anaerobic microorganisms Faecalibacterium prausnitzii, Gemmiger formicilis, and Collinsella aerofaciens. …”
-
1203
Supplementary file 1_Monitoring the dual-season hydrological dynamics of the Pong reservoir in Himachal Pradesh, India.docx
Published 2025“…The study employed a spatial linear trend modelling approach to identify trends in relative water depth, revealing a decreasing trend and a quantifiable reduction in the reservoir’s depth for both seasons. …”
-
1204
Assessment values of machine learning models.
Published 2025“…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …”
-
1205
List of datasets in AqSolDB.
Published 2025“…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …”
-
1206
Feature importance derived from SHAP analysis.
Published 2025“…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …”
-
1207
Significant repeated measurements sEMG outcomes.
Published 2025“…<div><p>Lateral ankle sprain (LAS) is a very common injury in the world of basketball. …”
-
1208
Maximum voluntary contraction assessment.
Published 2025“…<div><p>Lateral ankle sprain (LAS) is a very common injury in the world of basketball. …”
-
1209
Significant single measurement sEMG outcomes.
Published 2025“…<div><p>Lateral ankle sprain (LAS) is a very common injury in the world of basketball. …”
-
1210
-
1211
-
1212
Data_GDP/ Ndvi.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1213
Flow chart of the study.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1214
Example of manual identification.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1215
Data_soil.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1216
Data_road.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1217
Excel_ESs and transfer matrix.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1218
Data sources and descriptions.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1219
Coupling coordination types.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”
-
1220
Results_urban-fringe-rural.
Published 2025“…The findings include the following: (1) from 2010 to 2022, the spatial structure of urban-fringe-rural areas in Suzhou changed considerably, with 69.04% rural areas transformed into fringe areas, and 50.83% fringe areas developed into urban areas; (2) based on transition process, the region was further divided into urban maintenance, urban expansion, fringe maintenance, fringe expansion, and rural retention areas. Most of the mean value of ESs showed a gradient increasing differences along urban-fringe-rural, while the greatest decrease occurs in fringe expansion and urban expansion areas; and (3) interactions for changes in ES pairs also more closely linked in these two regions, with synergies dominating. …”