Search alternatives:
largest decrease » marked decrease (Expand Search)
values decrease » values increased (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
largest decrease » marked decrease (Expand Search)
values decrease » values increased (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
-
1021
Modeling method used.
Published 2025“…Urban vegetation significantly influences larval presence, although higher vegetation index values correlate with a decreased probability of larval occurrence. Additionally, the combination of vegetation and urban structures plays a crucial role in determining the presence of <i>Ae. albopictus</i> larvae in public spaces, where small, organized urban objects and large patches of vegetation increase the likelihood of larval presence. …”
-
1022
-
1023
-
1024
-
1025
-
1026
-
1027
-
1028
-
1029
-
1030
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
1031
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
1032
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
1033
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
1034
-
1035
-
1036
-
1037
-
1038
-
1039
-
1040