Search alternatives:
processing algorithm » modeling algorithm (Expand Search), routing algorithm (Expand Search), tracking algorithm (Expand Search)
network algorithm » new algorithm (Expand Search)
data processing » image processing (Expand Search)
element network » alignment network (Expand Search)
develop based » developed based (Expand Search), develop masld (Expand Search), development based (Expand Search)
processing algorithm » modeling algorithm (Expand Search), routing algorithm (Expand Search), tracking algorithm (Expand Search)
network algorithm » new algorithm (Expand Search)
data processing » image processing (Expand Search)
element network » alignment network (Expand Search)
develop based » developed based (Expand Search), develop masld (Expand Search), development based (Expand Search)
-
7661
Image 3_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif
Published 2025“…Utilizing scRNA-seq and bulk RNA-seq data, we performed a comprehensive differential expression analysis to highlight MitRGs. …”
-
7662
Image1_Multiple cell-death patterns predict the prognosis and drug sensitivity of melanoma patients.TIF
Published 2024“…Background<p>Melanoma, a malignant tumor of the skin, presents challenges in its treatment process involving modalities such as surgery, chemotherapy, and targeted therapy. …”
-
7663
Table 2_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx
Published 2025“…Utilizing scRNA-seq and bulk RNA-seq data, we performed a comprehensive differential expression analysis to highlight MitRGs. …”
-
7664
Image 1_Validation of the Somnolyzer 24×7 automatic scoring system in children with suspected obstructive sleep apnea.tif
Published 2025“…Introduction<p>Manual scoring of polysomnography data is a laborious and complex process. Automatic scoring by current computer algorithms shows high agreement with manual scoring. …”
-
7665
Table 1_Validation of the Somnolyzer 24×7 automatic scoring system in children with suspected obstructive sleep apnea.docx
Published 2025“…Introduction<p>Manual scoring of polysomnography data is a laborious and complex process. Automatic scoring by current computer algorithms shows high agreement with manual scoring. …”
-
7666
Table 6_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx
Published 2025“…Utilizing scRNA-seq and bulk RNA-seq data, we performed a comprehensive differential expression analysis to highlight MitRGs. …”
-
7667
Supplementary file 1_Gene expression profile in colon cancer therapeutic resistance and its relationship with the tumor microenvironment.docx
Published 2025“…The following algorithms were used: i. Limma was applied to identify differentially expressed genes; ii. …”
-
7668
Table 3_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7669
Table 6_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7670
Table 9_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7671
Table 10_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7672
Table 1_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7673
Table 14_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7674
Table 11_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7675
Table 2_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7676
Table 7_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7677
Table 8_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7678
Table 5_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7679
Table 4_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
7680
Table 15_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”