بدائل البحث:
dependent processing » dependent processes (توسيع البحث), dependent protein (توسيع البحث), dependent properties (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
a algorithm » _ algorithm (توسيع البحث), b algorithm (توسيع البحث), _ algorithms (توسيع البحث)
predict a » predict _ (توسيع البحث), predict task (توسيع البحث)
dependent processing » dependent processes (توسيع البحث), dependent protein (توسيع البحث), dependent properties (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
a algorithm » _ algorithm (توسيع البحث), b algorithm (توسيع البحث), _ algorithms (توسيع البحث)
predict a » predict _ (توسيع البحث), predict task (توسيع البحث)
-
1
Optimization process of BO algorithm.
منشور في 2024"…The results show that Gaussian Process emerged as the most efficient solution compared to other optimization algorithms, providing the lowest Mean Square Error and achieving a prediction R<sup>2</sup> of 0.998 for the training set, 0.972 for the validation set and 0.984 for the test set, while BO—Random Forest and Random Search performed as well on the training and test sets as Gaussian Process but significantly worse on the validation set, specifically R<sup>2</sup> on the validation set of BO—Random Forest and Random Search were 0.970 and 0.969 respectively over the entire dataset including all cross-sectional shapes of the RC wall. …"
-
2
A framework for improving localisation prediction algorithms.
منشور في 2024"…Proteins with non-canonical internal motifs, or those dually targeted need to be taken into account (as they help to better distinguish between pNTS and mNTS features) and validated data could be sorted according to whether it is part of a core- or pan-proteome. Classifiers on which the algorithms are trained could include parameters such as the evolutionary distance of a species, non-coding regions, or a protein’s abundance as a currently neglected factor. …"
-
3
-
4
-
5
Performance of algorithms outside the training species.
منشور في 2024"…<p>Comparison of predicted versus experimentally localised plastid <b>(a)</b> and mitochondrial <b>(b)</b> proteome numbers. …"
-
6
-
7
-
8
-
9
-
10
(a) Prediction using traditional algorithm. (b) Prediction using optimization algorithm.
منشور في 2025"…<p>(a) Prediction using traditional algorithm. (b) Prediction using optimization algorithm.…"
-
11
-
12
-
13
Prediction results of individual models.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
14
-
15
-
16
GA pseudo-code.
منشور في 2025"…The introduction of gated recurrent unit addresses the dependency of time series data and effectively solves the problem of gradient vanishing or exploding in traditional recurrent neural networks when processing long sequence data. …"
-
17
-
18
Pseudocode for the missForestPredict algorithm.
منشور في 2025"…Missing data in input variables often occur at model development and at prediction time. The missForestPredict R package proposes an adaptation of the missForest imputation algorithm that is fast, user-friendly and tailored for prediction settings. …"
-
19
-
20