بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
dietary data » history data (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary task » binary mask (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
dietary data » history data (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary task » binary mask (توسيع البحث)
-
1
-
2
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
3
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
4
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
5
The statistical description of the original data set of the patients (<i>n</i> = 162).
منشور في 2025الموضوعات: -
6
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
7
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
8
-
9
The comparison of the accuracy score of the benchmark and the proposed models.
منشور في 2025الموضوعات: -
10
-
11
-
12
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
منشور في 2025الموضوعات: -
13
-
14
-
15
-
16
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
17
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
18
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
19
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
20
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"