Showing 81 - 100 results of 22,376 for search '(( e fold decrease ) OR ( 100 ((((nm decrease) OR (nn decrease))) OR (a decrease)) ))', query time: 0.58s Refine Results
  1. 81
  2. 82
  3. 83
  4. 84

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  5. 85

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  6. 86

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  7. 87

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  8. 88

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  9. 89

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  10. 90

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  11. 91

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  12. 92

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  13. 93

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  14. 94

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  15. 95
  16. 96

    The decrease or inhibition of Hsp90 induced REST degradation. by Raúl Orozco-Díaz (7067624)

    Published 2019
    “…(D) The level of REST dramatically reduced in differentiated SH-SY5Y cells treated with GA (1 μM) or PU-H71 (50 nM) at 24 h. (E) The REST level decreased by GA more than 50% and (F) PU-H71 more than 80%, respectively. …”
  17. 97
  18. 98
  19. 99

    ANG II treatment leads to decreased contractile function. by Renita E. Horton (847891)

    Published 2016
    “…(E) Representative stress traces generated from x-projections of films (F) ANG II treatment leads to a decrease in contractile stress generation. Control n = 85 tissues, 5 nM n = 15 tissues, 100 nM n = 69 tissues, 3 harvests. …”
  20. 100

    Decreased cell stiffness after dissociation of intercellular adhesion. by Kristina Seiffert-Sinha (627059)

    Published 2014
    “…The corresponding cross section height measurements show a height decrease by slightly less than 100 nm (from ∼10 nm to −100 nm in the encircled area; lower panel); the arrow in the AFM images points to an intact intercellular connection before cutting (<b>E1</b>) and the disappearance thereof after cutting (<b>E2</b>). …”