Showing 201 - 220 results of 19,287 for search '(( e point decrease ) OR ((( 50 a decrease ) OR ( 50 ((we decrease) OR (nn decrease)) ))))', query time: 0.53s Refine Results
  1. 201
  2. 202
  3. 203

    The primers related to FAM50A. by Longhai Li (4052044)

    Published 2025
    “…Knockdown of FAM50A decreased cell proliferation ability, the proportion of EdU positive cells, and the number of CRC cell colonies, whereas overexpressing FAM50A promoted proliferative phenotypes. …”
  4. 204

    Temporal profiles of the key BO-NN features. by Julia Berezutskaya (9080269)

    Published 2020
    “…Right plot show the gradual decrease in the TM tuning for the features highlighted in <b>c</b> as well as the gradual increase in the temporal response profile (i.e. optimal shifts for the prediction of the key BO-NN features using Praat features shown in <b>a</b>). …”
  5. 205
  6. 206
  7. 207
  8. 208
  9. 209
  10. 210
  11. 211
  12. 212
  13. 213
  14. 214
  15. 215
  16. 216
  17. 217

    Top 50 results of a commercial kinase screen using [γ<sup>33</sup>]-ATP and human obscurin SH3-DH as substrates. by Daniel Koch (388049)

    Published 2023
    “…While MST2 addition resulted in strong and saturable phosphorylation, TBK1 led to much lower phosphorylation levels and CaMK4 addition led to an intermediate phosphorylation level exhibiting a biphasic behaviour with phosphorylation levels decreasing at higher substrate concentrations. …”
  18. 218

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  19. 219

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  20. 220

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”