Search alternatives:
point decrease » point increase (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
point decrease » point increase (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
-
102201
Presentation 1_Assessment of the morphological features, physiological and photosynthetic activity of the different cell forms of Symbiodiniaceae using microfluidic methods.pptx
Published 2025“…The slowed motile cells are also amenable for single-cell analysis of the activity of PSII (F<sub>v</sub>/F<sub>m</sub>). We therefore propose that the method developed here could serve as a sensitive monitoring system of the cell cycle changes and manipulation of cell motility mimicking the coral host environment, with concomitant single-cell photosynthetic activity analysis of Symbiodiniaceae.…”
-
102202
-
102203
-
102204
-
102205
Table_1_Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats.DOC
Published 2021“…</p><p>Results: Compared with the control group, the O<sub>2</sub> and H<sub>2</sub> groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. …”
-
102206
-
102207
-
102208
-
102209
Table_2_Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats.DOC
Published 2021“…</p><p>Results: Compared with the control group, the O<sub>2</sub> and H<sub>2</sub> groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. …”
-
102210
-
102211
-
102212
-
102213
-
102214
-
102215
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
-
102216
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
-
102217
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
-
102218
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
-
102219
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
-
102220
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”