Search alternatives:
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
-
39381
-
39382
-
39383
-
39384
Anthropogenic soil acidification severely imperils microbial diversity and functionality: A global synthesis
Published 2025“…Notably, nitrogen-induced acidification significantly reduces microbial richness, Shannon index, biomass, and functionality by 5.1%, 3.1%, 4.1%, and 5.1%, respectively. Meanwhile, acid addition decreases microbial biomass and functionality by 9.4% and 15%, respectively. …”
-
39385
Community-based mass treatment with azithromycin for the elimination of yaws in Ghana—Results of a pilot study
Published 2018“…<div><p>Introduction</p><p>The WHO yaws eradication strategy consists of one round of total community treatment (TCT) of single-dose azithromycin with coverage of > 90%.The efficacy of the strategy to reduce the levels on infection has been demonstrated previously in isolated island communities in the Pacific region. We aimed to determine the efficacy of a single round of TCT with azithromycin to achieve a decrease in yaws prevalence in communities that are endemic for yaws and surrounded by other yaws-endemic areas.…”
-
39386
9th International Conference on Engineering for Waste and Biomass ValorisationJune 27-30, 2022 Copenhagen, Denmarkwww.wasteeng2022.orgSection E10 - Enzymes in esterification proces...
Published 2025“…This network stabilizes the liquid mixture, which results in a significantly decreased melting point compared to the initial compounds. …”
-
39387
Curve fitting of UCS.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39388
Fluctuation coefficient of UCS.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39389
Numerical simulation model.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39390
Mechanical parameters.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39391
-
39392
Fitting relationship between rock size and UCS.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39393
Relationship between UCS and rock bridge angle.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39394
UCS under different rock bridge angle.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39395
Regression parameters under different rock sizes.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39396
Fitting curves of UCS in different rock sizes.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39397
UCS under different rock size.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39398
Relationship between CCS and rock bridge angle.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39399
Fitting curve of CCS and rock bridge angle.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”
-
39400
Curve fitting of rock bridge angle and UCS.
Published 2024“…The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.…”