Showing 101,401 - 101,420 results of 103,630 for search '(( e point decrease ) OR ( 5 ((we decrease) OR (((nn decrease) OR (a decrease)))) ))', query time: 1.68s Refine Results
  1. 101401
  2. 101402
  3. 101403
  4. 101404
  5. 101405

    p53 gene silienc by siRNA can reverse DEX induced apoptosis and cell cycle arrest of MC3T3-E1 cells. by Hui Li (32376)

    Published 2013
    “…<p>(A) Real time PCR examination of MC3T3-E1 cells in which the p53 gene function was silenced by siRNA (sip53-1, sip53-2) targeting p53mRNA; the mRNA expression level of p53 in the sip53-1and sip53-2 groups decreased significantly (P<0.05) compared to that in the FBS group and the siC group. …”
  6. 101406

    Table_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.DOCX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  7. 101407

    Table_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  8. 101408

    <i>In vitro</i> cardiomyocyte function in saline/RA and LPS/O<sub>2</sub> exposed mice at 8 weeks of age. by Markus Velten (77282)

    Published 2013
    “…<p>(A) % Peak shortening (% PS) was increased in the LPS/RA exposed mice. …”
  9. 101409

    Table_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  10. 101410

    Data_Sheet_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  11. 101411

    Table_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  12. 101412

    Data_Sheet_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  13. 101413

    Data_Sheet_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  14. 101414

    Table_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  15. 101415

    Table_7_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  16. 101416

    Data_Sheet_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  17. 101417

    Data_Sheet_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  18. 101418

    Influence of sampling accuracy on augmented reality for laparoscopic image-guided surgery by Andrea Teatini (9540508)

    Published 2020
    “…</p> <p> The study was conducted in three different scenarios in which the accuracy of sampling targets for PBR decreases: using an assessment phantom with machined divot holes, a patient-specific liver phantom with markers visible in computed tomography (CT) scans and <i>in vivo</i>, relying on the surgeon’s anatomical understanding to perform annotations. …”
  19. 101419
  20. 101420