Search alternatives:
codingn_ algorithm » cosine algorithm (Expand Search)
mapping algorithm » making algorithm (Expand Search), mining algorithm (Expand Search), learning algorithm (Expand Search)
neural codingn_ » neural coding (Expand Search)
box algorithm » best algorithm (Expand Search), _ algorithm (Expand Search), ii algorithm (Expand Search)
element » elements (Expand Search)
elemental » elementsal (Expand Search), elements (Expand Search)
codingn_ algorithm » cosine algorithm (Expand Search)
mapping algorithm » making algorithm (Expand Search), mining algorithm (Expand Search), learning algorithm (Expand Search)
neural codingn_ » neural coding (Expand Search)
box algorithm » best algorithm (Expand Search), _ algorithm (Expand Search), ii algorithm (Expand Search)
element » elements (Expand Search)
elemental » elementsal (Expand Search), elements (Expand Search)
-
1
Comparison of mAP curves in ablation experiments.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
Ablation study visualization results.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
11
Experimental parameter configuration.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
12
FLMP-YOLOv8 identification results.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
13
C2f structure.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
14
Experimental environment configuration.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
15
Ablation experiment results table.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
16
YOLOv8 identification results.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
17
LSKA module structure diagram.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
18
FarsterBlock structure.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
19
Sample augmentation and annotation illustration.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
-
20
YOLOv8 model architecture diagram.
Published 2025“…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”