Showing 1 - 20 results of 101 for search '(( element box algorithm ) OR ((( elemental mapping algorithm ) OR ( neural codingn_ algorithm ))))', query time: 0.33s Refine Results
  1. 1

    Comparison of mAP curves in ablation experiments. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Ablation study visualization results. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  11. 11

    Experimental parameter configuration. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  12. 12

    FLMP-YOLOv8 identification results. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  13. 13

    C2f structure. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  14. 14

    Experimental environment configuration. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  15. 15

    Ablation experiment results table. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  16. 16

    YOLOv8 identification results. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  17. 17

    LSKA module structure diagram. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  18. 18

    FarsterBlock structure. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  19. 19

    Sample augmentation and annotation illustration. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”
  20. 20

    YOLOv8 model architecture diagram. by Xiaozhou Feng (2918222)

    Published 2025
    “…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …”