Search alternatives:
processing algorithm » modeling algorithm (Expand Search), routing algorithm (Expand Search), tracking algorithm (Expand Search)
data processing » image processing (Expand Search)
data algorithm » data algorithms (Expand Search), update algorithm (Expand Search), atlas algorithm (Expand Search)
code algorithm » cosine algorithm (Expand Search), novel algorithm (Expand Search), modbo algorithm (Expand Search)
element data » settlement data (Expand Search), relevant data (Expand Search), movement data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
processing algorithm » modeling algorithm (Expand Search), routing algorithm (Expand Search), tracking algorithm (Expand Search)
data processing » image processing (Expand Search)
data algorithm » data algorithms (Expand Search), update algorithm (Expand Search), atlas algorithm (Expand Search)
code algorithm » cosine algorithm (Expand Search), novel algorithm (Expand Search), modbo algorithm (Expand Search)
element data » settlement data (Expand Search), relevant data (Expand Search), movement data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
-
4381
Image 8_Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.tif
Published 2025“…</p>Methods<p>We systematically collected and analyzed genomic and clinical data from patients receiving anti-PD-1/PD-L1 immunotherapy across multiple cohorts. …”
-
4382
Image 2_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.tif
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4383
Image 4_Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning....
Published 2025“…</p>Conclusion<p>In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. …”
-
4384
Image 3_Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning....
Published 2025“…</p>Conclusion<p>In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. …”
-
4385
Table 3_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.xlsx
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4386
Table 1_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.xlsx
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4387
Supplementary file 1_Gene expression profile in colon cancer therapeutic resistance and its relationship with the tumor microenvironment.docx
Published 2025“…The following algorithms were used: i. Limma was applied to identify differentially expressed genes; ii. …”
-
4388
Image 5_Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning....
Published 2025“…</p>Conclusion<p>In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. …”
-
4389
Image 1_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.tif
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4390
Image 3_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.jpeg
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4391
Table 2_Development and validation of a machine learning-driven mitochondrial gene signature for the diagnosis of breast cancer.xlsx
Published 2025“…Using 113 machine learning algorithms and MitoCarta mitochondrial genetics data, we developed a mitochondrial gene-based diagnostic model. …”
-
4392
Image 2_Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning....
Published 2025“…</p>Conclusion<p>In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. …”
-
4393
Image 1_Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning....
Published 2025“…</p>Conclusion<p>In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. …”
-
4394
Table 3_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4395
Table 6_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4396
Table 9_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4397
Table 10_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4398
Table 1_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4399
Table 14_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
-
4400
Table 11_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida...
Published 2025“…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”