بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
stem learning » deep learning (توسيع البحث), shot learning (توسيع البحث), e learning (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
stem learning » deep learning (توسيع البحث), shot learning (توسيع البحث), e learning (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
-
1
-
2
Comparison of different optimization algorithms.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
3
-
4
Algorithmic experimental parameter design.
منشور في 2024"…The results of numerical simulations and sea trial experimental data indicate that the use of subarrays comprising 5 and 3 array elements, respectively, is sufficient to effectively estimate 12 source angles. …"
-
5
Spatial spectrum estimation for three algorithms.
منشور في 2024"…The results of numerical simulations and sea trial experimental data indicate that the use of subarrays comprising 5 and 3 array elements, respectively, is sufficient to effectively estimate 12 source angles. …"
-
6
-
7
The run time for each algorithm in seconds.
منشور في 2025"…The goal of this paper is to examine several extensions to KGR/GPoG, with the aim of generalising them a wider variety of data scenarios. The first extension we consider is the case of graph signals that have only been partially recorded, meaning a subset of their elements is missing at observation time. …"
-
8
Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn’s disease using machine learning algorithms
منشور في 2025"…Diagnostic models were constructed using machine learning algorithms, and biologic therapy efficacy was predicted with advanced regression techniques. …"
-
9
-
10
Risk element category diagram.
منشور في 2025"…This article extracted features related to risk assessment, such as weather factors, airport facility inspections, and security check results, and conducted qualitative and quantitative analysis on these features to generate a datable risk warning weight table. This article used these data to establish an LSTM model, which trained LSTM to identify potential risks and provide early warning by learning patterns and trends in historical data. …"
-
11
Data Sheet 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
12
-
13
-
14
-
15
-
16
Image 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
17
Table 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
18
Table 6_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
19
Table 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
20
Table 4_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"