بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
modeling algorithm » making algorithm (توسيع البحث)
neural modeling » neural modelling (توسيع البحث), neural coding (توسيع البحث), causal modeling (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
modeling algorithm » making algorithm (توسيع البحث)
neural modeling » neural modelling (توسيع البحث), neural coding (توسيع البحث), causal modeling (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Feature selection using Boruta algorithm.
منشور في 2025"…</p><p>Methods</p><p>Multiple machine learning (ML) algorithms were applied to data from the 2022 Bangladesh Demographic Health Survey, including Random Forest, Decision Tree, K-Nearest Neighbors, Logistic Regression, Support Vector Machine, XGBoost, LightGBM and Neural Networks. …"
-
7
-
8
-
9
-
10
Image 2_AI-driven innovation in antibody-drug conjugate design.jpeg
منشور في 2025"…This review is organized into six sections: (1) the progression from traditional modeling approaches to AI-driven design of individual ADC components; (2) the application of deep learning (DL) to antibody structure prediction and identification of optimal conjugation sites; (3) the use of AI/ML models for forecasting pharmacokinetic properties and toxicity profiles; (4) emerging generative algorithms for antibody sequence diversification and affinity optimization; (5) case studies demonstrating the integration of computational tools with experimental pipelines, including systems that link in silico predictions to high-throughput validation; and (6) persistent challenges, including data sparsity, model interpretability, validation complexity, and regulatory considerations. …"
-
11
Image 1_AI-driven innovation in antibody-drug conjugate design.jpeg
منشور في 2025"…This review is organized into six sections: (1) the progression from traditional modeling approaches to AI-driven design of individual ADC components; (2) the application of deep learning (DL) to antibody structure prediction and identification of optimal conjugation sites; (3) the use of AI/ML models for forecasting pharmacokinetic properties and toxicity profiles; (4) emerging generative algorithms for antibody sequence diversification and affinity optimization; (5) case studies demonstrating the integration of computational tools with experimental pipelines, including systems that link in silico predictions to high-throughput validation; and (6) persistent challenges, including data sparsity, model interpretability, validation complexity, and regulatory considerations. …"
-
12
-
13
Comparison of the error reduction in terms of RMSE and MSE for Kalman filter with learning module.
منشور في 2024الموضوعات: -
14
Computational Micromechanics and Machine Learning-Informed Design of Composite Carbon Fiber-Based Structural Battery for Multifunctional Performance Prediction
منشور في 2025الموضوعات: "…bayesian optimization algorithm…"
-
15
-
16
Learning to alpha beta filter prediction results with original temperature data and sensor readings.
منشور في 2024الموضوعات: -
17
-
18
-
19
-
20