بدائل البحث:
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
query processing » pre processing (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
query processing » pre processing (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
481
Table 4_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…Additionally, the least absolute shrinkage and selection operator (LASSO) regression algorithm in machine learning was used to screen transcription factors such as bHLH, WRKY, and MYB that influenced the expression of TaAkPHY genes. …"
-
482
Table 11_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…Additionally, the least absolute shrinkage and selection operator (LASSO) regression algorithm in machine learning was used to screen transcription factors such as bHLH, WRKY, and MYB that influenced the expression of TaAkPHY genes. …"
-
483
Table 6_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…Additionally, the least absolute shrinkage and selection operator (LASSO) regression algorithm in machine learning was used to screen transcription factors such as bHLH, WRKY, and MYB that influenced the expression of TaAkPHY genes. …"
-
484
Image 2_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).tif
منشور في 2025"…Additionally, the least absolute shrinkage and selection operator (LASSO) regression algorithm in machine learning was used to screen transcription factors such as bHLH, WRKY, and MYB that influenced the expression of TaAkPHY genes. …"
-
485
Identify different types of urban renewal implementations at streetscape scale
منشور في 2025"…Existing research primarily focuses on detecting pixel-level or object-level changes in urban physical space, often neglecting the semantic complexity inherent in urban renewal. …"
-
486
Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma
منشور في 2025"…<p>The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. …"
-
487
AI Influence in the Educational Environment
منشور في 2025"…The CSV file contains Likert-scale and categorical responses, with a separate README describing each variable and coding scheme.</p><p dir="ltr"><b>Potential reuse</b><br>Researchers can replicate or extend technology-acceptance models in emerging-economy contexts, compare student versus professional cohorts, or conduct secondary analyses on AI self-efficacy and algorithmic trust.…"
-
488
Electronic supplement to "Computational De Novo Design of Group II Introns Yields Highly Active Ribozymes"
منشور في 2025"…Here we use the RNA inverse folding algorithm aRNAque to design G2Is de novo, yielding three novel self-splicing ribozymes with unusually stable structures. …"
-
489
<b>R</b><b>esidual</b> <b>GCB-Net</b>: Residual Graph Convolutional Broad Network on Emotion Recognition
منشور في 2025"…It can accurately reflect the emotional changes of the human body by applying graphical-based algorithms or models. EEG signals are nonlinear signals. …"
-
490
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
منشور في 2025"…</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…"
-
491
ImproBR Replication Package
منشور في 2025"…<br><br>**Import Errors:**<br>Make sure you're in the replication package directory:<br>```bash<br>cd ImproBR-Replication<br>python improbr_pipeline.py --help<br>```<br><br>## Research Results & Evaluation Data<br>### RQ1: Bug Report Improvement Evaluation (139 reports)<br>**Manual Evaluation Results:**<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv</u>) - First evaluator assessments<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv</u>) - Second evaluator assessments <br>- [`RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv</u>) - Consolidated evaluation results<br><br>**Inter-Rater Agreement (Cohen's Kappa):**<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png</u>) - Steps to Reproduce κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png</u>) - Observed Behavior κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png</u>) - Expected Behavior κ scores<br><br>**Algorithm Results:**<br>- [`RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/</u>) - ImproBR improved reports<br>- [`RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/</u>) - ChatBR baseline results<br>- [`RQ1-RQ2/RQ1/algorithm_results/bee_analysis/`](<u>RQ1-RQ2/RQ1/algorithm_results/bee_analysis/</u>) - BEE tool structural analysis<br><br>### RQ2: Comparative Analysis vs ChatBR (37 pairs)<br>**Similarity Score Results:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv</u>) - TF-IDF similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv</u>) - Word2Vec similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json</u>) - Complete TF-IDF comparison with scores for each comparison unit (full debugging)<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json</u>) - Complete Word2Vec comparison with scores for each comparison unit (full debugging)<br><br>**Algorithm Outputs:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/</u>) - ImproBR enhanced reports<br>- [`RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/</u>) - ChatBR baseline outputs<br>- [`RQ1-RQ2/RQ2/dataset/ground_truth/`](<u>RQ1-RQ2/RQ2/dataset/ground_truth/</u>) - High-quality reference reports<br>## Important Notes<br><br>1. …"
-
492
Figure 8 from Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States
منشور في 2024"…Each tumor sample was color-coded by its <i>ERG</i> fusion status inferred by the <i>ERG</i> gene expression level. …"
-
493
<b>A virtual tracer experiment to assess the temporal origin of root water uptake, evaporation, and </b><b>drainage</b>
منشور في 2024"…</p><p dir="ltr"><a href="" target="_blank">Two open-source Matlab scripts are available in the zip-files. The PT.m Matlab code determines the drainage transit time based on the particle tracking algorithm, while the VTE.m Matlab code determines the drainage and RWU transit times and relative rainfall contributions to actual evaporation, actual transpiration, and drainage using isotope transport simulations in HYDRUS-1D</a>. …"
-
494
Data Sheet 1_MACRPO: Multi-agent cooperative recurrent policy optimization.pdf
منشور في 2024"…The results show superior performance against other algorithms. The code is available online at https://github.com/kargarisaac/macrpo.…"
-
495
Code repository
منشور في 2025"…A portion of the resulting data is used to train various ML models aimed at both classifying the type of damage and estimating its severity. …"
-
496
CIOP database
منشور في 2025"…</p><p dir="ltr">The database is produced from a throughput experiment and a regression algorithm.</p><p dir="ltr">10 common SEI containing elements are included and will be updated based on more experimental data later. …"
-
497
Video 2_MACRPO: Multi-agent cooperative recurrent policy optimization.mp4
منشور في 2024"…The results show superior performance against other algorithms. The code is available online at https://github.com/kargarisaac/macrpo.…"
-
498
Video 1_MACRPO: Multi-agent cooperative recurrent policy optimization.mp4
منشور في 2024"…The results show superior performance against other algorithms. The code is available online at https://github.com/kargarisaac/macrpo.…"
-
499
Video 3_MACRPO: Multi-agent cooperative recurrent policy optimization.mp4
منشور في 2024"…The results show superior performance against other algorithms. The code is available online at https://github.com/kargarisaac/macrpo.…"
-
500
Survey Data on NSSI, Stress Response, Emotional Regulation Strategies and gender in Chinese Undergraduates
منشور في 2025"…</p><p dir="ltr"><b>Behavioral sub-questionnaire (AFASM1-12) :</b> Assesses NSSI with or without visible tissue damage</p><p dir="ltr"><b>Functional sub-questionnaire (BFASM1-19):</b> Measures three function types</p><ul><li><i>Automatic negative reinforcement: r</i>efers to engaging in NSSI to relieve or escape from an unpleasant internal state</li><li><i>Social positive reinforcement: </i>refers to engaging in NSSI to create a favorable state or to fulfill social needs</li><li><i>Emotional expression:</i>refers to engaging in NSSI as a means of expressing one’s emotional experiences</li></ul><p dir="ltr"><b>Scale:</b> 5-point Likert scale</p><h3><b>4.Gender</b></h3><ul><li>In this study, males were coded as “1” and females as “2”.</li></ul><p dir="ltr"><b>Usage Notes</b></p><ul><li></li><li>Each row represents one participant; columns include both item‑level and aggregated subscale scores.…"