بدائل البحث:
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
waste processing » data processing (توسيع البحث), wood processing (توسيع البحث), image processing (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
waste processing » data processing (توسيع البحث), wood processing (توسيع البحث), image processing (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
321
Visualizations of three clusters.
منشور في 2025"…Additionally, we found three distinct preparatory reading patterns: <i><i>Fast Surface-level Preparatory Reading, Systematic Deep-level Preparatory Reading,</i></i> and <i><i>Extended Iterative Preparatory Reading,</i></i> each reflecting a distinct combination of cognitive investment and reading speed. …"
-
322
Summary of three preparatory reading clusters.
منشور في 2025"…Additionally, we found three distinct preparatory reading patterns: <i><i>Fast Surface-level Preparatory Reading, Systematic Deep-level Preparatory Reading,</i></i> and <i><i>Extended Iterative Preparatory Reading,</i></i> each reflecting a distinct combination of cognitive investment and reading speed. …"
-
323
LSTM model’s equations.
منشور في 2025"…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…"
-
324
Parameter’s interpretation.
منشور في 2025"…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…"
-
325
The models’ training parameters.
منشور في 2025"…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…"
-
326
Model’s measure methods.
منشور في 2025"…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…"
-
327
Association point and relationship.
منشور في 2025"…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…"
-
328
Periodic Table’s Properties Using Unsupervised Chemometric Methods: Undergraduate Analytical Chemistry Laboratory Exercise
منشور في 2024"…The unsupervised algorithms were able to find “natural” clustering from the periodic table using the data structure without any prior knowledge of the class assignment of the samples. …"
-
329
Periodic Table’s Properties Using Unsupervised Chemometric Methods: Undergraduate Analytical Chemistry Laboratory Exercise
منشور في 2024"…The unsupervised algorithms were able to find “natural” clustering from the periodic table using the data structure without any prior knowledge of the class assignment of the samples. …"
-
330
-
331
-
332
-
333
-
334
EvoFuzzy
منشور في 2024"…The algorithm evolves a population of networks using fuzzy trigonometric differential evolution, with gene expression predictions based on confidence levels applied through a fuzzy logic-based predictor.…"
-
335
TreeMap 2016: A tree-level model of the forests of the conterminous United States circa 2016
منشور في 2025"…The raster map of plot identifiers can be linked to the FIA databases available through the FIA DataMart (https://doi.org/10.2737/RDS-2001-FIADB) or to the text and SQL files included in this data publication to produce tree-level maps or to map other plot attributes. The accompanying database files included in this publication also contain attributes regarding the FIA plot CN (or control number, a unique identifier for each time a plot is measured), the subplot number, the tree record number, and for each tree: the status (live or dead), species, diameter, height, actual height (where broken), crown ratio, number of trees per acre, and a code for cause of death where applicable. …"
-
336
Ricker seismic profile.
منشور في 2025"…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"
-
337
Noise reduction on testing sets from STEAD.
منشور في 2025"…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"
-
338
SNR comparison of real-field seismic profile.
منشور في 2025"…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"
-
339
The flowchart of GWO-VMD method.
منشور في 2025"…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"
-
340
The 147th single trace.
منشور في 2025"…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"