Showing 61 - 80 results of 11,246 for search '(( element method algorithm ) OR ((( based finding algorithm ) OR ( data using algorithm ))))', query time: 0.49s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67
  8. 68
  9. 69
  10. 70

    Poster: Norma: A Framework for Finding Threshold Associations Between Continuous Variables Using Point-wise Function by Md Mahin (21434966)

    Published 2025
    “…To be able to compute such hotspots, the paper proposes a novel grid-based spatial hotspot-growing algorithm which computes regions of a point-wise function above a given threshold. …”
  11. 71
  12. 72

    Image 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  13. 73

    Table 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  14. 74

    Table 6_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  15. 75

    Table 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  16. 76

    Table 4_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  17. 77

    Image 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  18. 78

    Table 8_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  19. 79

    Table 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”
  20. 80

    Image 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.tiff by Benedictor Alexander Nguchu (9984371)

    Published 2025
    “…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …”