Search alternatives:
modeling algorithm » making algorithm (Expand Search)
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
boruta algorithm » forest algorithm (Expand Search)
based modeling » based model (Expand Search), based models (Expand Search)
data boruta » data beretta (Expand Search)
element » elements (Expand Search)
modeling algorithm » making algorithm (Expand Search)
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
boruta algorithm » forest algorithm (Expand Search)
based modeling » based model (Expand Search), based models (Expand Search)
data boruta » data beretta (Expand Search)
element » elements (Expand Search)
-
1
Types of machine learning algorithms.
Published 2024“…Thus, the objectives of this study are to develop an appropriate model for predicting the risk of undernutrition and identify its influencing predictors among under-five children in Bangladesh using explainable machine learning algorithms.…”
-
2
-
3
Data Sheet 3_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
4
Data Sheet 2_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
5
Data Sheet 4_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
6
Data Sheet 6_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.docx
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
7
Data Sheet 1_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.pdf
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
8
-
9
-
10
-
11
Feature selection using Boruta algorithm.
Published 2025“…Feature selection was performed using the Boruta algorithm and model performance was evaluated by comparing accuracy, precision, recall, F1 score, MCC, Cohen’s Kappa and AUROC.…”
-
12
Feature selection using the Boruta algorithm.
Published 2025“…</p><p>Results</p><p>Our study included 2,213 patients, of whom 345 (15.6%) experienced in-hospital mortality. The Boruta algorithm identified 29 significant risk factors, and the top 13 variables were used for developing machine learning models. …”
-
13
-
14
Convergence curve of the DBO algorithm.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
15
-
16
-
17
-
18
-
19
-
20
Scatter diagram of different principal elements.
Published 2025“…Finally, a transformer diagnostic model based on SSA-LightGBM was constructed, and the ten fold cross validation method was used to verify the classification ability of the model. …”