بدائل البحث:
network algorithm » new algorithm (توسيع البحث)
method algorithm » means algorithm (توسيع البحث), mean algorithm (توسيع البحث), modbo algorithm (توسيع البحث)
data clustering » deep clustering (توسيع البحث), spatial clustering (توسيع البحث), dbscan clustering (توسيع البحث)
element » elements (توسيع البحث)
network algorithm » new algorithm (توسيع البحث)
method algorithm » means algorithm (توسيع البحث), mean algorithm (توسيع البحث), modbo algorithm (توسيع البحث)
data clustering » deep clustering (توسيع البحث), spatial clustering (توسيع البحث), dbscan clustering (توسيع البحث)
element » elements (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Data Sheet 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
10
Convergence curve of the DBO algorithm.
منشور في 2025"…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …"
-
11
-
12
Simplifying OpenStreetMap Street Networks with Topology Preservation and Clustering
منشور في 2024"…Our multilane detection algorithm consolidates individual lane polylines into single centerlines to simplify the network. …"
-
13
-
14
-
15
Image 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
16
Table 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
17
Table 6_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
18
Table 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
19
Table 4_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
20
Image 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"