بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
making algorithm » finding algorithm (توسيع البحث), means algorithm (توسيع البحث)
solved learning » novel learning (توسيع البحث), involve learning (توسيع البحث), applied learning (توسيع البحث)
data making » data backing (توسيع البحث), data mining (توسيع البحث), data tracking (توسيع البحث)
element » elements (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
making algorithm » finding algorithm (توسيع البحث), means algorithm (توسيع البحث)
solved learning » novel learning (توسيع البحث), involve learning (توسيع البحث), applied learning (توسيع البحث)
data making » data backing (توسيع البحث), data mining (توسيع البحث), data tracking (توسيع البحث)
element » elements (توسيع البحث)
-
1
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
2
-
3
-
4
-
5
Flowchart of the RIR algorithm.
منشور في 2024"…By leveraging optimal control theory, we propose an iterative algorithm to solve the problem, numerically obtaining the learned time-varying parameters and a repair strategy. …"
-
6
-
7
-
8
Speed efficiency of the proposed technique in comparison with the baseline deep learning models.
منشور في 2025الموضوعات: -
9
-
10
Visualization of learned features via t-SNE.
منشور في 2025"…Compared to traditional classification methods, the improved spectral clustering algorithm demonstrated better adaptability to data distribution and superior clustering performance. …"
-
11
-
12
-
13
-
14
-
15
-
16
-
17
Comparison of algorithm performance aesults.
منشور في 2025"…<div><p>Federated learning ensures that data can be trained globally across clients without leaving the local environment, making it suitable for fields involving privacy data such as healthcare and finance. …"
-
18
-
19
-
20