Showing 1 - 20 results of 9,560 for search '(( element method algorithm ) OR ((( data modeling algorithm ) OR ( data boruta algorithm ))))', query time: 0.57s Refine Results
  1. 1
  2. 2

    Feature selection using Boruta algorithm. by Shayla Naznin (13014015)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm and model performance was evaluated by comparing accuracy, precision, recall, F1 score, MCC, Cohen’s Kappa and AUROC.…”
  3. 3

    Feature selection using the Boruta algorithm. by Guang Tu (22054865)

    Published 2025
    “…The Boruta algorithm identified 29 significant risk factors, and the top 13 variables were used for developing machine learning models. …”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Data Sheet 3_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  9. 9

    Data Sheet 2_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  10. 10

    Data Sheet 4_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  11. 11

    Data Sheet 6_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.docx by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  12. 12

    Data Sheet 1_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.pdf by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  13. 13

    Types of machine learning algorithms. by Md. Merajul Islam (12646837)

    Published 2024
    “…Thus, the objectives of this study are to develop an appropriate model for predicting the risk of undernutrition and identify its influencing predictors among under-five children in Bangladesh using explainable machine learning algorithms.…”
  14. 14
  15. 15
  16. 16
  17. 17

    Data Sheet 1_L-shaped nonlinear relationship between magnesium intake from diet and supplements and the risk of diabetic nephropathy: a cross-sectional study.docx by Jia Du (3363635)

    Published 2025
    “…A multi-step analytical strategy was adopted: (1) confounders were selected using variance inflation factor and Boruta feature selection algorithm; (2) weighted multivariable logistic regression assessed the association between magnesium intake and DN; (3) restricted cubic splines (RCS), generalized additive models (GAM), and curve fitting were used to evaluate nonlinear dose–response trends; (4) piecewise regression identified potential thresholds; (5) subgroup analyses examined interactions across age, gender, BMI, hypertension, and cardiovascular disease.…”
  18. 18

    Algorithmic experimental parameter design. by Chuanxi Xing (20141665)

    Published 2024
    “…The results of numerical simulations and sea trial experimental data indicate that the use of subarrays comprising 5 and 3 array elements, respectively, is sufficient to effectively estimate 12 source angles. …”
  19. 19

    Spatial spectrum estimation for three algorithms. by Chuanxi Xing (20141665)

    Published 2024
    “…The results of numerical simulations and sea trial experimental data indicate that the use of subarrays comprising 5 and 3 array elements, respectively, is sufficient to effectively estimate 12 source angles. …”
  20. 20

    Data. by Nishat Tasnim Thity (21755858)

    Published 2025
    Subjects: