Showing 181 - 200 results of 12,657 for search '(( element method algorithm ) OR ((( data using algorithm ) OR ( data model algorithm ))))*', query time: 0.57s Refine Results
  1. 181
  2. 182
  3. 183
  4. 184

    Data Sheet 3_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  5. 185

    Data Sheet 2_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  6. 186

    Data Sheet 4_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  7. 187

    Data Sheet 6_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.docx by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  8. 188

    Data Sheet 1_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.pdf by Cong Peng (160287)

    Published 2025
    “…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
  9. 189

    Maple code for algorithm 3. by Peter Thompson (165468)

    Published 2025
    “…This new type of identifiability can be determined using our new algorithms, as is demonstrated by applications to various published biomedical models. …”
  10. 190
  11. 191
  12. 192

    Improved random forest algorithm. by Zhen Zhao (159931)

    Published 2025
    “…Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …”
  13. 193

    K-means++ clustering algorithm. by Zhen Zhao (159931)

    Published 2025
    “…Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …”
  14. 194
  15. 195
  16. 196
  17. 197
  18. 198
  19. 199
  20. 200