بدائل البحث:
experiment learning » experiment training (توسيع البحث), experience learning (توسيع البحث), experiment teaching (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
te algorithm » tide algorithm (توسيع البحث), new algorithm (توسيع البحث), de algorithms (توسيع البحث)
element te » element _ (توسيع البحث), element g (توسيع البحث), element data (توسيع البحث)
experiment learning » experiment training (توسيع البحث), experience learning (توسيع البحث), experiment teaching (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
te algorithm » tide algorithm (توسيع البحث), new algorithm (توسيع البحث), de algorithms (توسيع البحث)
element te » element _ (توسيع البحث), element g (توسيع البحث), element data (توسيع البحث)
-
1
-
2
-
3
-
4
Hyperparameters of self-supervised learning algorithms used in Experiments 1–5.
منشور في 2024"…<p>Hyperparameters of self-supervised learning algorithms used in Experiments 1–5.</p>…"
-
5
-
6
-
7
-
8
-
9
USDA-ARS Tucson, Arizona 2014-2022 Data Reservoir of Field Experiments with Managed Honey Bee Colonies: Annotated Hive Frame Photos: Dataset I
منشور في 2025"…,</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.PNG</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.xml</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.txt</p><p dir="ltr">Each PNG is annotated for the following categories:</p><p dir="ltr">(1) CappedHoneyCell </p><p dir="ltr">(2) CappedWorkerBroodCell</p><p dir="ltr"> (3) EmptyCombCell</p><p dir="ltr">(4) PollenCell</p><p dir="ltr"> (5) UncappedNectarCell</p><p dir="ltr"> (6) UncappedWorkerLarvaCell</p><p dir="ltr">(7) BeeHiveFrame</p><p dir="ltr">The counts on the number of annotated region of interest (ROI) images are as follows:</p><p dir="ltr">CappedHoneyCell: 19,723</p><p dir="ltr">CappedWorkerBroodCell: 21,456</p><p dir="ltr">EmptyCombCell: 20,655</p><p dir="ltr">PollenCell: 13,406</p><p dir="ltr">UncappedNectarCell: 11,009</p><p dir="ltr">UncappedWorkerLarvaCell: 18,283</p><p dir="ltr">BeeHiveFrame: 1001</p><p dir="ltr">Each such ROI can be extracted into a separate image and used in training machine learning algorithms.</p><p dir="ltr">The subdirectory SRC/ contains two Python scripts that can convert XML to TXT and TXT to XML: xml_to_txt_converter.py and txt_to_xml_converter.py.…"
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
TIR-Learner v3: New generation TE annotation program for identifying TIRs
منشور في 2025"…The old TIR suffers from slow execution on large genomes due to intense I/O operations and less efficient algorithms, it also lacks maintainability due to legacy dependency issues. …"
-
18
-
19
-
20