يعرض 201 - 220 نتائج من 274 نتيجة بحث عن '(( element update algorithm ) OR ((( fluent processing algorithm ) OR ( level coding algorithm ))))', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 201

    Main module structure. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  2. 202

    Counting results on MTDC-UAV dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  3. 203

    Quantitative results on DRPD dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  4. 204

    Architecture of MAR-YOLOv9. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  5. 205

    Quantitative results on MTDC-UAV dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  6. 206

    Counting results on WEDU dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  7. 207

    Example images from four plant datasets. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  8. 208

    Counting results on RFRB dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  9. 209

    Detection visualization results on WEDU dataset. حسب Dunlu Lu (19964225)

    منشور في 2024
    "…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
  10. 210
  11. 211

    Video 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.mp4 حسب Matthew Yedutenko (5142461)

    منشور في 2025
    "…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
  12. 212

    Data Sheet 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.pdf حسب Matthew Yedutenko (5142461)

    منشور في 2025
    "…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
  13. 213

    supporting data for PHD thesis entitled " Arousal Regulation and Neurofeedback Treatment for ADHD Children" حسب Yuliang Wang (9151616)

    منشور في 2025
    "…Analyses use standardized mean differences (Hedges g) under random-effects models, stratified by comparator type (medicine, active, sham, passive) and, where applicable, contrasted across protocol families (customised algorithm, SCP, SMR, TBR).</p><p dir="ltr">The supporting dataset contains the <b>raw arm-level descriptive statistics</b> required to compute effect sizes: per study, outcome, and timepoint it lists group means, standard deviations, and sample sizes for neurofeedback and control arms, along with rater, comparator category, protocol type, and outcome direction coding (so higher values consistently reflect the intended construct). …"
  14. 214

    Echo Peak حسب Rocco De Marco (14146593)

    منشور في 2025
    "…</p><p dir="ltr">For classification, the algorithm iteratively processes the audio in overlapping time windows. …"
  15. 215

    Identify different types of urban renewal implementations at streetscape scale حسب Xiaotong Wang (20852492)

    منشور في 2025
    "…Existing research primarily focuses on detecting pixel-level or object-level changes in urban physical space, often neglecting the semantic complexity inherent in urban renewal. …"
  16. 216

    Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma حسب Zhaochen Wang (12176245)

    منشور في 2025
    "…<p>The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. …"
  17. 217

    AI Influence in the Educational Environment حسب Lev Radman (21381269)

    منشور في 2025
    "…The CSV file contains Likert-scale and categorical responses, with a separate README describing each variable and coding scheme.</p><p dir="ltr"><b>Potential reuse</b><br>Researchers can replicate or extend technology-acceptance models in emerging-economy contexts, compare student versus professional cohorts, or conduct secondary analyses on AI self-efficacy and algorithmic trust.…"
  18. 218

    <b>R</b><b>esidual</b> <b>GCB-Net</b>: Residual Graph Convolutional Broad Network on Emotion Recognition حسب Qilin Li (535447)

    منشور في 2025
    "…It can accurately reflect the emotional changes of the human body by applying graphical-based algorithms or models. EEG signals are nonlinear signals. …"
  19. 219

    ImproBR Replication Package حسب Anonymus (18533633)

    منشور في 2025
    "…<br><br>**Import Errors:**<br>Make sure you're in the replication package directory:<br>```bash<br>cd ImproBR-Replication<br>python improbr_pipeline.py --help<br>```<br><br>## Research Results & Evaluation Data<br>### RQ1: Bug Report Improvement Evaluation (139 reports)<br>**Manual Evaluation Results:**<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv</u>) - First evaluator assessments<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv</u>) - Second evaluator assessments <br>- [`RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv</u>) - Consolidated evaluation results<br><br>**Inter-Rater Agreement (Cohen's Kappa):**<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png</u>) - Steps to Reproduce κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png</u>) - Observed Behavior κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png</u>) - Expected Behavior κ scores<br><br>**Algorithm Results:**<br>- [`RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/</u>) - ImproBR improved reports<br>- [`RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/</u>) - ChatBR baseline results<br>- [`RQ1-RQ2/RQ1/algorithm_results/bee_analysis/`](<u>RQ1-RQ2/RQ1/algorithm_results/bee_analysis/</u>) - BEE tool structural analysis<br><br>### RQ2: Comparative Analysis vs ChatBR (37 pairs)<br>**Similarity Score Results:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv</u>) - TF-IDF similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv</u>) - Word2Vec similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json</u>) - Complete TF-IDF comparison with scores for each comparison unit (full debugging)<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json</u>) - Complete Word2Vec comparison with scores for each comparison unit (full debugging)<br><br>**Algorithm Outputs:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/</u>) - ImproBR enhanced reports<br>- [`RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/</u>) - ChatBR baseline outputs<br>- [`RQ1-RQ2/RQ2/dataset/ground_truth/`](<u>RQ1-RQ2/RQ2/dataset/ground_truth/</u>) - High-quality reference reports<br>## Important Notes<br><br>1. …"
  20. 220

    Figure 8 from Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States حسب Runpu Chen (14942572)

    منشور في 2024
    "…Each tumor sample was color-coded by its <i>ERG</i> fusion status inferred by the <i>ERG</i> gene expression level. …"