يعرض 1 - 20 نتائج من 4,873 نتيجة بحث عن '(( elements each algorithm ) OR ((( data processing algorithm ) OR ( derived using algorithm ))))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1

    The run time for each algorithm in seconds. حسب Edward Antonian (21453161)

    منشور في 2025
    "…Finally, we use the Laplace approximation to determine a lower bound for the out-of-sample prediction error and derive a scalable expression for the marginal variance of each prediction. …"
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Kidney Transplant Biopsy-derived signature matrix of 18 cell phenotypes (KTB18) for deconvolution using the CIBERSORTx algorithm حسب Alexis Varin (20591600)

    منشور في 2025
    "…<p dir="ltr"><a href="https://www.nature.com/articles/s41587-019-0114-2" rel="noreferrer" target="_blank">CIBERSORTx</a> is an algorithm, accessible through a <a href="https://cibersortx.stanford.edu/index.php" rel="noreferrer" target="_blank">web portal</a>, designed to infer the cellular composition of bulk RNA-seq or microarray data, referred to as "mixture files". …"
  8. 8

    Algorithm process. حسب Wei Cui (92129)

    منشور في 2025
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Credit Card Fraud Classification Using Applied Machine Learning – A Comparative Study of 24 ML Algorithms حسب Kelechi Amamba (21022064)

    منشور في 2025
    "…<p dir="ltr">Credit Card Fraud Classification Using Applied Machine Learning – A Comparative Study of 24 ML Algorithms</p><p dir="ltr">This study describes an empirical evaluation of 24 machine learning models, including Logistic Regression, Decision Trees, Random Forests, Support Vector Machines and Neural Networks using a highly imbalanced fraud dataset that reflects the real-world where the data was culled from. …"
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Partial derivatives of the log-LF. حسب Qin Gong (118801)

    منشور في 2024
    "…Finally, we demonstrate effectiveness of our estimation method in practical applications using a set of real data.</p></div>…"
  19. 19
  20. 20