بدائل البحث:
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
data processing » image processing (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
each algorithm » search algorithm (توسيع البحث), means algorithm (توسيع البحث)
elements each » elements crcy (توسيع البحث), elements uce (توسيع البحث), experiments each (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
data processing » image processing (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
each algorithm » search algorithm (توسيع البحث), means algorithm (توسيع البحث)
elements each » elements crcy (توسيع البحث), elements uce (توسيع البحث), experiments each (توسيع البحث)
-
1
Statistics of GI data processing using different algorithms at various input CTTDs.
منشور في 2025الموضوعات: -
2
Statistics of HEWL data processing using different algorithms at various input CTTDs.
منشور في 2025الموضوعات: -
3
The run time for each algorithm in seconds.
منشور في 2025"…The goal of this paper is to examine several extensions to KGR/GPoG, with the aim of generalising them a wider variety of data scenarios. The first extension we consider is the case of graph signals that have only been partially recorded, meaning a subset of their elements is missing at observation time. …"
-
4
-
5
-
6
Training process of HFKG-RFE algorithm.
منشور في 2025"…Therefore, An Algorithm for Heterogeneous Federated Knowledge Graph (HFKG) is proposed to solve this problem by limiting model drift through comparative learning. …"
-
7
-
8
-
9
-
10
Results on solving TSS using different evolutionary and greedy algorithms.
منشور في 2025"…<p>Results on solving TSS using different evolutionary and greedy algorithms.…"
-
11
-
12
Algorithms runtime comparison.
منشور في 2025"…On this basis, considering the changes of customer demands and the speed of distribution network, a partheno-genetic hybrid simulated annealing algorithm is designed to solve the model by using the idea of disruption event processing combining immediate processing and scheduled batch processing. …"
-
13
-
14
-
15
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
16
-
17
Solution results of different algorithms.
منشور في 2025"…On this basis, considering the changes of customer demands and the speed of distribution network, a partheno-genetic hybrid simulated annealing algorithm is designed to solve the model by using the idea of disruption event processing combining immediate processing and scheduled batch processing. …"
-
18
-
19
-
20