يعرض 1 - 20 نتائج من 119 نتيجة بحث عن '(( elements each algorithm ) OR ((( element mapping algorithm ) OR ( neural codingn_ algorithm ))))', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
  2. 2

    Low-SAR |B1+| maps. حسب Maryam Arianpouya (12299222)

    منشور في 2024
    الموضوعات:
  3. 3
  4. 4

    Multi-material topology optimization using scaled boundary finite element method حسب Mohammed Saif Zamiruddin Siddiqui (22384884)

    منشور في 2025
    "…SBFEM is implemented and its performance is tested across different density interpolation-based MMTO methods: the Alternating Active-Phase (AAP) algorithm, SIMP with mapping based interpolation, and polygonal mesh based MMTO, PolyMat which uses Discrete Material Optimization (DMO) combined with Zhang–Paulino–Ramos (ZPR) update scheme. …"
  5. 5
  6. 6

    The run time for each algorithm in seconds. حسب Edward Antonian (21453161)

    منشور في 2025
    "…We find evidence that the generalised GLS-KGR algorithm is well-suited to such time-series applications, outperforming several standard techniques on this dataset.…"
  7. 7

    Workflow comparison. حسب Maryam Arianpouya (12299222)

    منشور في 2024
    الموضوعات:
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Video 1_A hybrid elastic-hyperelastic approach for simulating soft tactile sensors.mp4 حسب Berith Atemoztli De la Cruz Sánchez (21758708)

    منشور في 2025
    "…A significant challenge for simulating tactile sensors is balancing the trade-off between accuracy and processing time in simulation algorithms and models. To address this, we propose a hybrid approach that combines elastic and hyperelastic finite element simulations, complemented by convolutional neural networks (CNNs), to generate synthetic tactile maps of a soft capacitive tactile sensor. …"
  15. 15
  16. 16
  17. 17

    Comparison of mAP curves in ablation experiments. حسب Xiaozhou Feng (2918222)

    منشور في 2025
    "…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
  18. 18
  19. 19
  20. 20