بدائل البحث:
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
selected using » collected using (توسيع البحث)
elements ipca » elements crcy (توسيع البحث), elements ppm (توسيع البحث), elements ices (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
selected using » collected using (توسيع البحث)
elements ipca » elements crcy (توسيع البحث), elements ppm (توسيع البحث), elements ices (توسيع البحث)
-
1
-
2
Features selection using the Boruta algorithm.
منشور في 2025"…We identified the important features related to IA using the Boruta algorithm. Predictions were made using different machine learning (ML) (decision tree (DT), random forest (RF), support vector machines (SVMs), and logistic regression (LR)) models. …"
-
3
Feature selection using Boruta algorithm.
منشور في 2025"…Feature selection was performed using the Boruta algorithm and model performance was evaluated by comparing accuracy, precision, recall, F1 score, MCC, Cohen’s Kappa and AUROC.…"
-
4
Feature selection using the Boruta algorithm.
منشور في 2025"…We extracted baseline characteristics, laboratory parameters, and clinical outcomes. The Boruta algorithm was employed for feature selection to identify variables significantly associated with in-hospital mortality, and 16 machine learning models, including logistic regression, random forest, gradient boosting, and neural networks, were developed and compared using receiver operating characteristic (ROC) curves and area under the curve (AUC) analysis. …"
-
5
-
6
Variable selection procedure using the Boruta algorithm.
منشور في 2025"…<p>Variable selection procedure using the Boruta algorithm.</p>…"
-
7
-
8
-
9
-
10
-
11
-
12
GA pseudo-code.
منشور في 2025"…GA is used to optimize the feature selection process to identify the key feature subsets that have the greatest impact on model performance. …"
-
13
-
14
-
15
List of the time used by each algorithm.
منشور في 2024"…In this manner high quality and common samples are randomly selected for training the classifier. Finally, to solve the issue of concept drift, EDAC designs and implements an ensemble classifier that uses a self-feedback strategy to determine the initial weight of the classifier by adjusting the weight of the sub-classifier according to the performance on the arrived data chunks. …"
-
16
-
17
-
18
-
19
-
20
Correlation matrices of handcrafted features before and after feature selection. The figure presents two heatmaps illustrating the correlation among 52 handcrafted features derived from the 3-level wavelet transform (WT) at four resolutions. These features were used as inputs for traditional ML algorithms. The left map demonstrates the correlation matrix of 52 features crafted from 4 resolutions of the 3-level WT, which are used as inputs for traditional ML algorithms....
منشور في 2025"…These features were used as inputs for traditional ML algorithms. The left map demonstrates the correlation matrix of 52 features crafted from 4 resolutions of the 3-level WT, which are used as inputs for traditional ML algorithms. …"