بدائل البحث:
application algorithm » approximation algorithm (توسيع البحث), location algorithm (توسيع البحث), optimization algorithm (توسيع البحث)
based application » broad application (توسيع البحث), broader application (توسيع البحث), broad applications (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
elements method » element method (توسيع البحث)
code algorithm » cosine algorithm (توسيع البحث), novel algorithm (توسيع البحث), modbo algorithm (توسيع البحث)
data code » data model (توسيع البحث), data came (توسيع البحث)
application algorithm » approximation algorithm (توسيع البحث), location algorithm (توسيع البحث), optimization algorithm (توسيع البحث)
based application » broad application (توسيع البحث), broader application (توسيع البحث), broad applications (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
elements method » element method (توسيع البحث)
code algorithm » cosine algorithm (توسيع البحث), novel algorithm (توسيع البحث), modbo algorithm (توسيع البحث)
data code » data model (توسيع البحث), data came (توسيع البحث)
-
281
-
282
-
283
-
284
An instance of the IPP that can be solved by applying the algorithms for the DPP.
منشور في 2025الموضوعات: -
285
The flowchart of GWO-VMD method.
منشور في 2025"…We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …"
-
286
-
287
-
288
-
289
-
290
-
291
-
292
Comparison of performance metrics of algorithms in CHPDEED system.
منشور في 2025الموضوعات: "…practical engineering applications…"
-
293
-
294
-
295
-
296
-
297
-
298
-
299
Data and code for: Automatic fish scale analysis
منشور في 2025"…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …"
-
300
Surface Tension Prediction of Fuel Additives Based on Machine Learning Model with Subtraction-Average-Based Optimizer Algorithm
منشور في 2025"…Then, a BP neural network model with the subtraction-average-based optimizer (SABO) algorithm was proposed. The results show that the SABO-BP model significantly reduced the deviation between calculated and experimental values, outperforming the previous empirical models. …"