Search alternatives:
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
boruta algorithm » forest algorithm (Expand Search)
elements method » element method (Expand Search)
code algorithm » cosine algorithm (Expand Search), novel algorithm (Expand Search), modbo algorithm (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
boruta algorithm » forest algorithm (Expand Search)
elements method » element method (Expand Search)
code algorithm » cosine algorithm (Expand Search), novel algorithm (Expand Search), modbo algorithm (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
-
21
-
22
-
23
-
24
-
25
-
26
Types of machine learning algorithms.
Published 2024“…The Boruta technique was implemented to identify the important predictors of undernutrition, and logistic regression, artificial neural network, random forest, and extreme gradient boosting (XGB) were adopted to predict undernutrition (stunting, wasting, and underweight) risk. …”
-
27
-
28
-
29
-
30
Data Sheet 3_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
31
Data Sheet 2_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
32
Data Sheet 4_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.zip
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
33
Data Sheet 6_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.docx
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
34
Data Sheet 1_A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.pdf
Published 2025“…Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. …”
-
35
-
36
-
37
-
38
-
39
ATF-DF-WA Algorithm Experimental Code
Published 2025“…<p dir="ltr">The provided code files serve the following purposes:</p><ul><li><b>Preprocess.py</b> – This script handles text preprocessing tasks, such as cleaning and preparing raw text data for further processing.…”
-
40