بدائل البحث:
encoding algorithm » finding algorithm (توسيع البحث), cosine algorithm (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
making algorithm » learning algorithm (توسيع البحث), finding algorithm (توسيع البحث), means algorithm (توسيع البحث)
elements method » element method (توسيع البحث)
data encoding » data including (توسيع البحث), data according (توسيع البحث), data recording (توسيع البحث)
data making » data backing (توسيع البحث), data mining (توسيع البحث), data tracking (توسيع البحث)
encoding algorithm » finding algorithm (توسيع البحث), cosine algorithm (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
making algorithm » learning algorithm (توسيع البحث), finding algorithm (توسيع البحث), means algorithm (توسيع البحث)
elements method » element method (توسيع البحث)
data encoding » data including (توسيع البحث), data according (توسيع البحث), data recording (توسيع البحث)
data making » data backing (توسيع البحث), data mining (توسيع البحث), data tracking (توسيع البحث)
-
2301
Feature selection from the Australian dataset.
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2302
ROC Curve for Australian dataset.
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2303
PR Curve for European cardholder 2023.
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2304
ROC Curve for European cardholder 2023.
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2305
PR Curve for European cardholder 2013 (SMOTE).
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2306
Recent benchmark studies.
منشور في 2025"…To validate the proposed approach, we test it on five diverse datasets with varying characteristics and imbalance levels, employing five state-of-the-art machine learning algorithms: Random Forest (RF), Extra Trees (ET), XGBoost (XGBC), AdaBoost, and CatBoost. …"
-
2307
Presentation1_Extrachromosomal circular DNAs in prostate adenocarcinoma: global characterizations and a novel prediction model.pdf
منشور في 2024"…The immune microenvironment of the risk model was quantified using a variety of immunological algorithms, which also identified its characteristics with regard to immunotherapy, immune response, and immune infiltration.…"
-
2308
<b>Resting ECG Segmentation Dataset</b>
منشور في 2025"…<br><br>Rhythm Type Records num</li><li>AF (Atrial Flutter) 400</li><li>AFIB (Atrial Fibrillation) 400</li><li>AT (Atrial Tachycardia) 121</li><li>SB (Sinus Bradycardia) 400</li><li>SI (Sinus Irregularity) 399</li><li>SR (Sinus Rhythm) 400</li><li>ST (Sinus Tachycardia) 140</li><li>SVT (Supraventricular Tachycardia) 139</li><li>Total 2399</li></ul><p><br></p><p dir="ltr">The combination of high-quality beat-level labels and broad rhythm coverage makes RDB a strong benchmark for developing and evaluating ECG segmentation algorithms that must generalise across diverse clinical presentations.…"
-
2309
Post-marketing safety associated with sodium zirconium cyclosilicate: a pharmacovigilance study based on the FDA reporting system
منشور في 2025"…Accordingly, the objective of this study was to investigate real-world adverse events (AEs) associated with SZC using the FDA Adverse Event Reporting System (FAERS).</p> <p>Relevant data regarding SZC were extracted from FAERS, and signal detection was conducted using four distinct algorithms. …"
-
2310
Generative AI and Journalism: Content, Journalistic Perceptions, and Audience Experiences
منشور في 2025"…These biases exist because of human biases embedded in training data and/or the conscious or unconscious biases of those who develop AI algorithms and models. …"
-
2311
Data Sheet 1_ARGContextProfiler: extracting and scoring the genomic contexts of antibiotic resistance genes using assembly graphs.pdf
منشور في 2025"…Several tools, databases, and algorithms are now available to facilitate the identification of ARGs in metagenomic sequencing data; however, direct annotation of short-read data provides limited contextual information. …"
-
2312
Data Sheet 1_Evaluating the effectiveness of AI-enhanced “One Body, Two Wings” pharmacovigilance models in China: a nationwide survey on medication safety and risk management.pdf...
منشور في 2025"…As the pharmaceutical landscape grows more complex, integrating AI into pharmacovigilance offers the potential to enhance adverse drug reaction (ADR) detection and monitoring.</p>Methods<p>A nationwide cross-sectional survey was conducted from June 25 to August 10, 2024, involving 1,000 participants from pharmacovigilance centers, hospitals, corporations, and the general public. …"
-
2313
Table 1_Correlation of triglyceride-glucose index with the incidence and prognosis of hyperglycemic crises in critically ill patients with diabetes mellitus: a machine-learning-bas...
منشور في 2025"…This study aims to evaluate the relationship between the TyG index and HCE incidence/clinical outcomes in critically ill patients with DM and to construct a risk prediction model using machine-learning algorithms.</p>Methods<p>This multi-center retrospective investigation leveraged clinical repositories from Medical Information Mart for Intensive Care IV (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD). …"
-
2314
Supporting data for "Fracture and Non-linear Response of Biopolymer Network with Dynamic Cross-linkers"
منشور في 2025"…It details the input parameters, such as line density and crosslink number, as well as the algorithms employed for filament arrangement and crosslink determination. …"