Showing 4,321 - 4,340 results of 4,360 for search '(( elements method algorithm ) OR ((( data encoding algorithm ) OR ( data processing algorithm ))))', query time: 0.42s Refine Results
  1. 4321

    Table 11_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  2. 4322

    Table 2_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  3. 4323

    Table 7_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  4. 4324

    Table 8_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  5. 4325

    Table 5_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  6. 4326

    Table 4_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validat... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  7. 4327

    Table 15_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  8. 4328

    Table 12_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  9. 4329

    Table 13_Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental valida... by Guiling Wu (6031019)

    Published 2025
    “…Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. …”
  10. 4330

    Image 1_Construction of a diagnostic model and identification of effect genes for diabetic kidney disease with concurrent vascular calcification based on bioinformatics and multipl... by Lili Huang (125493)

    Published 2025
    “…</p>Methods<p>RNA sequencing (Bulk-seq) data of DKD and VC from various species were obtained from the Gene Expression Omnibus (GEO) database, and relevant datasets were integrated. …”
  11. 4331

    The overall framework of this study. by Tianbao Feng (21722233)

    Published 2025
    “…Additionally, a protein-protein interaction (PPI) network was established to identify hub genes, and 8 machine learning algorithms were used to narrowed down hub genes. <i>BMX</i> and <i>CASP5</i> were consistently identified across all algorithms. …”
  12. 4332

    PANoptosis related genes. by Tianbao Feng (21722233)

    Published 2025
    “…Additionally, a protein-protein interaction (PPI) network was established to identify hub genes, and 8 machine learning algorithms were used to narrowed down hub genes. <i>BMX</i> and <i>CASP5</i> were consistently identified across all algorithms. …”
  13. 4333

    Image 1_Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.tif by Lijuan Feng (3746086)

    Published 2025
    “…Biomarkers were subsequently identified using machine learning algorithms, receiver operating characteristic analysis, and expression level comparisons between RA and control samples. …”
  14. 4334

    Table 3_Athero-oncology perspective: identifying hub genes for atherosclerosis diagnosis using machine learning.csv by Liyan Zhao (340225)

    Published 2025
    “…UMAP plots from single-cell RNA sequencing data were used to analyze the expression patterns of hub genes, particularly focusing on macrophage-like SMCs in SMC lineage-traced mouse models. …”
  15. 4335

    Table 9_Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.xlsx by Lijuan Feng (3746086)

    Published 2025
    “…Biomarkers were subsequently identified using machine learning algorithms, receiver operating characteristic analysis, and expression level comparisons between RA and control samples. …”
  16. 4336

    Table 6_Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.xlsx by Lijuan Feng (3746086)

    Published 2025
    “…Biomarkers were subsequently identified using machine learning algorithms, receiver operating characteristic analysis, and expression level comparisons between RA and control samples. …”
  17. 4337

    Image 1_Athero-oncology perspective: identifying hub genes for atherosclerosis diagnosis using machine learning.tif by Liyan Zhao (340225)

    Published 2025
    “…UMAP plots from single-cell RNA sequencing data were used to analyze the expression patterns of hub genes, particularly focusing on macrophage-like SMCs in SMC lineage-traced mouse models. …”
  18. 4338

    Table 5_Athero-oncology perspective: identifying hub genes for atherosclerosis diagnosis using machine learning.csv by Liyan Zhao (340225)

    Published 2025
    “…UMAP plots from single-cell RNA sequencing data were used to analyze the expression patterns of hub genes, particularly focusing on macrophage-like SMCs in SMC lineage-traced mouse models. …”
  19. 4339

    Image 4_Athero-oncology perspective: identifying hub genes for atherosclerosis diagnosis using machine learning.tif by Liyan Zhao (340225)

    Published 2025
    “…UMAP plots from single-cell RNA sequencing data were used to analyze the expression patterns of hub genes, particularly focusing on macrophage-like SMCs in SMC lineage-traced mouse models. …”
  20. 4340

    Table 3_Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.xlsx by Lijuan Feng (3746086)

    Published 2025
    “…Biomarkers were subsequently identified using machine learning algorithms, receiver operating characteristic analysis, and expression level comparisons between RA and control samples. …”