بدائل البحث:
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
mining algorithm » finding algorithm (توسيع البحث), making algorithm (توسيع البحث), training algorithms (توسيع البحث)
elements method » element method (توسيع البحث)
data processing » image processing (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
mining algorithm » finding algorithm (توسيع البحث), making algorithm (توسيع البحث), training algorithms (توسيع البحث)
elements method » element method (توسيع البحث)
data processing » image processing (توسيع البحث)
-
4521
Image 2_Athero-oncology perspective: identifying hub genes for atherosclerosis diagnosis using machine learning.tif
منشور في 2025"…UMAP plots from single-cell RNA sequencing data were used to analyze the expression patterns of hub genes, particularly focusing on macrophage-like SMCs in SMC lineage-traced mouse models. …"
-
4522
Primer sequences of <i>Bm</i>x and β-actin.
منشور في 2025"…Additionally, a protein-protein interaction (PPI) network was established to identify hub genes, and 8 machine learning algorithms were used to narrowed down hub genes. <i>BMX</i> and <i>CASP5</i> were consistently identified across all algorithms. …"
-
4523
Data Sheet 1_ARGContextProfiler: extracting and scoring the genomic contexts of antibiotic resistance genes using assembly graphs.pdf
منشور في 2025"…Several tools, databases, and algorithms are now available to facilitate the identification of ARGs in metagenomic sequencing data; however, direct annotation of short-read data provides limited contextual information. …"
-
4524
Table 1_Correlation of triglyceride-glucose index with the incidence and prognosis of hyperglycemic crises in critically ill patients with diabetes mellitus: a machine-learning-bas...
منشور في 2025"…This study aims to evaluate the relationship between the TyG index and HCE incidence/clinical outcomes in critically ill patients with DM and to construct a risk prediction model using machine-learning algorithms.</p>Methods<p>This multi-center retrospective investigation leveraged clinical repositories from Medical Information Mart for Intensive Care IV (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD). …"