يعرض 1 - 20 نتائج من 5,394 نتيجة بحث عن '(( elements rf algorithm ) OR ((( predictive learning algorithm ) OR ( neural coding algorithm ))))', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
  2. 2

    Table 6_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  3. 3

    Table 7_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  4. 4

    Table 3_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  5. 5

    Table 2_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  6. 6

    Table 1_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  7. 7

    Table 4_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  8. 8

    Table 5_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx حسب Anjan Kumar Pradhan (9386369)

    منشور في 2025
    "…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …"
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    The genome coding scheme. حسب Wenbing Shi (5806160)

    منشور في 2025
    الموضوعات:
  16. 16
  17. 17

    Flowchart of the study. حسب Usman Haider (12630481)

    منشور في 2025
    الموضوعات:
  18. 18
  19. 19
  20. 20