Search alternatives:
marked decrease » marked increase (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
marked decrease » marked increase (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
1
-
2
-
3
-
4
Group-level narrow- and broad-band spectral changes after hemispherotomy reveal a marked EEG slowing of the isolated cortex, robust across patients.
Published 2025“…This decrease was larger in the disconnected than in the contralateral cortex. …”
-
5
-
6
Biases in larger populations.
Published 2025“…<p>(<b>A</b>) Maximum absolute bias vs the number of neurons in the population for the Bayesian decoder. …”
-
7
-
8
-
9
-
10
-
11
-
12
Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses
Published 2025“…In contrast, reversing managed to natural ecosystems significantly increased NNM by 20% (9.7, 25.4%) and decreased NN by 89% (−125, −46%), indicating increasing N availability while decreasing potential N loss. …”
-
13
-
14
-
15
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
16
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
17
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
18
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
19
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
20
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”