بدائل البحث:
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
fatal time » final time (توسيع البحث), fatal type (توسيع البحث)
time based » home based (توسيع البحث)
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
fatal time » final time (توسيع البحث), fatal type (توسيع البحث)
time based » home based (توسيع البحث)
-
1
-
2
-
3
The flowchart of MCS algorithm.
منشور في 2024"…Therefore, we construct mixed-integer linear programming with semi-soft time windows (MIPSSTW) model for optimizing emergency vehicle routing in highway incidents. …"
-
4
The results of four algorithms.
منشور في 2024"…Therefore, we construct mixed-integer linear programming with semi-soft time windows (MIPSSTW) model for optimizing emergency vehicle routing in highway incidents. …"
-
5
The pseudocode of the MCS algorithm.
منشور في 2024"…Therefore, we construct mixed-integer linear programming with semi-soft time windows (MIPSSTW) model for optimizing emergency vehicle routing in highway incidents. …"
-
6
Parameters setting in the MCS algorithm.
منشور في 2024"…Therefore, we construct mixed-integer linear programming with semi-soft time windows (MIPSSTW) model for optimizing emergency vehicle routing in highway incidents. …"
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Flow chart of particle swarm algorithm.
منشور في 2024"…The third phase is the training and testing phase. Finally, the best-performing model was selected and compared with the currently established models (Alexnet, Squeezenet, Googlenet, Resnet50).…"
-
14
-
15
-
16
-
17
-
18
Proposed architecture testing phase.
منشور في 2025"…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …"
-
19
-
20