Search alternatives:
based optimization » whale optimization (Expand Search)
batch based » biotech based (Expand Search), patches based (Expand Search)
a bayesian » _ bayesian (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
based optimization » whale optimization (Expand Search)
batch based » biotech based (Expand Search), patches based (Expand Search)
a bayesian » _ bayesian (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
1
-
2
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
3
-
4
Algorithms runtime comparison.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
5
Solution results of different algorithms.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
6
-
7
Pre-optimization iteration process.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
8
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
9
Proposed RVCNet architecture.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
10
The ROC curves of the proposed RVCNet.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
11
Radiography X-ray image from the dataset.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
12
Confusion matrix of proposed RVCNet.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
13
Results of multiple runs for RVCNet.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
14
Basic methodology of the overall system.
Published 2023“…Results show that with the Nadam optimizer, the proposed algorithm has an overall classification accuracy, AUC, precision, recall, and F1-score of 91.27%, 92.31%, 90.48%, 98.30%, and 94.23%, respectively. …”
-
15
-
16
Explanation of symbols and meanings.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
17
Comparison results.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
18
Experimental related parameter values.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
19
Distribution vehicle information at 9.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
20
GWO and MOA parameter setting.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”