بدائل البحث:
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
final case » fatal case (توسيع البحث), nominal case (توسيع البحث)
case based » made based (توسيع البحث), game based (توسيع البحث), rate based (توسيع البحث)
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
final case » fatal case (توسيع البحث), nominal case (توسيع البحث)
case based » made based (توسيع البحث), game based (توسيع البحث), rate based (توسيع البحث)
-
1
-
2
-
3
WSN optimized by different algorithms.
منشور في 2025"…<div><p>This study develops an enhanced Secretary Bird Optimization Algorithm (ASBOA) based on the original Secretary Bird Optimization Algorithm (SBOA), aiming to further improve the solution accuracy and convergence speed for wireless sensor network (WSN) deployment and engineering optimization problems. …"
-
4
-
5
Optimized process of the random forest algorithm.
منشور في 2023"…Specific coal mine case studies are conducted to verify the applicability of the optimized random forest algorithm. …"
-
6
-
7
-
8
-
9
-
10
-
11
Flow chart of particle swarm algorithm.
منشور في 2024"…The third phase is the training and testing phase. Finally, the best-performing model was selected and compared with the currently established models (Alexnet, Squeezenet, Googlenet, Resnet50).…"
-
12
-
13
-
14
-
15
-
16
Ant colony algorithm parameter setting.
منشور في 2024"…The ant colony algorithm is further used to optimize the transportation route based on the calculation results of the emergency material dispatching for disaster areas, and finally forms the intelligent emergency materials dispatching scheme that meets the multiple objectives. …"
-
17
-
18
Proposed architecture testing phase.
منشور في 2025"…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …"
-
19
-
20