Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
final match » final batch (Expand Search)
match model » each model (Expand Search), path model (Expand Search), rasch model (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a based » ai based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
final match » final batch (Expand Search)
match model » each model (Expand Search), path model (Expand Search), rasch model (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a based » ai based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
-
1
Homomorphic binary tree.
Published 2024“…The wavelet reconstruction algorithm can simulate all kinds of fast changes in the actual working process more accurately and compress irrelevant information while retaining key signal features, so as to optimize the simulation performance of the model. …”
-
2
-
3
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
4
-
5
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
6
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
7
-
8
-
9
Feature matching results of different methods.
Published 2025“…Finally, the shared matching Siamese network with a unique dual-branch feature fusion strategy and similarity optimization algorithm is proposed to enhance the accuracy of feature matching. …”
-
10
On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
Published 2025“…However, we argue that the predominant approach for aligning LLMs with human preferences through a reward model—reinforcement learning from human feedback (RLHF)—suffers from an inherent algorithmic bias due to its Kullback–Leibler-based regularization in optimization. …”
-
11
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …”
-
12
Algorithm for generating hyperparameter.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
13
-
14
-
15
Results of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
-
17
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
18
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
19
ROC comparison of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”