Search alternatives:
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
based optimization » whale optimization (Expand Search)
final model » animal model (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
based optimization » whale optimization (Expand Search)
final model » animal model (Expand Search)
-
1
The flowchart of Algorithm 2.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
2
-
3
-
4
-
5
Experimental comparisons of single category indexes under different algorithms.
Published 2021Subjects: -
6
Comparison of annotation precision for single category labels using different algorithms.
Published 2021Subjects: -
7
Algorithms runtime comparison.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
8
ROC curve for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
9
Confusion matrix for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
10
Train stopping plan.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
11
Major notations.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
12
S1 File -
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
13
-
14
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …”
-
15
Solution results of different algorithms.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
16
-
17
-
18
Diagnostic accuracy of different models.
Published 2025“…The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. …”
-
19
Multi-model fault diagnosis results.
Published 2025“…The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. …”
-
20
Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files
Published 2025“…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …”