Search alternatives:
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
final model » animal model (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
final model » animal model (Expand Search)
-
1
-
2
The flowchart of Algorithm 2.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
3
-
4
-
5
-
6
-
7
Experimental comparisons of single category indexes under different algorithms.
Published 2021Subjects: -
8
-
9
Comparison of annotation precision for single category labels using different algorithms.
Published 2021Subjects: -
10
Algorithms runtime comparison.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
11
Train stopping plan.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
12
Major notations.
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
13
S1 File -
Published 2024“…For the former, it is further divided into two sub-problems according to the stochastic nature of passenger no-show behavior, which is optimized iteratively. Finally, the effectiveness of the proposed model and algorithm is evaluated through numerical studies. …”
-
14
-
15
Solution results of different algorithms.
Published 2025“…Finally, the correctness of the model is analyzed through numerical experiments, and the effectiveness of the proposed algorithm, the joint distribution strategy, and the disruption event processing idea of combining immediate processing and scheduled batch processing is analyzed. …”
-
16
Statistical summary of all models.
Published 2025“…This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
17
Diagnostic accuracy of different models.
Published 2025“…The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. …”
-
18
Classification performance of ML and DL models.
Published 2025“…This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
19
Multi-model fault diagnosis results.
Published 2025“…The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. …”
-
20
Hyperparameters of the LSTM Model.
Published 2025“…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …”