Showing 141 - 160 results of 259 for search '(( final phase process optimization algorithm ) OR ( binary based based optimization algorithm ))', query time: 0.40s Refine Results
  1. 141

    Schematic of iteration process of IDE-IIGA. by Ling Zhao (111365)

    Published 2025
    “…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
  2. 142

    Schematic diagram of IGA chromosome coding. by Ling Zhao (111365)

    Published 2025
    “…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
  3. 143

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …”
  4. 144

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  5. 145

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  6. 146

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  7. 147
  8. 148

    Comparison with existing SOTA techniques. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  9. 149

    Proposed inverted residual parallel block. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  10. 150

    Inverted residual bottleneck block. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  11. 151

    Sample classes from the HMDB51 dataset. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  12. 152

    Sample classes from UCF101 dataset [40]. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  13. 153

    Self-attention module for the features learning. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  14. 154

    Residual behavior. by Yasir Khan Jadoon (21433231)

    Published 2025
    “…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
  15. 155

    the functioning of BRPSO. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  16. 156

    Characteristic of 6- and 10-story SMRF [99,98]. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  17. 157

    The RFD’s behavior mechanism (2002). by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  18. 158
  19. 159
  20. 160

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”