Search alternatives:
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
sample design » sampling design (Expand Search)
final sample » fecal samples (Expand Search), total sample (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
sample design » sampling design (Expand Search)
final sample » fecal samples (Expand Search), total sample (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
Multi objective optimization design process.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
7
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
8
Optimal Latin square sampling distribution.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
9
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
-
10
The flowchart of Algorithm 2.
Published 2024“…To solve this optimization model, a multi-level optimization algorithm is designed. …”
-
11
Proposed Algorithm.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
12
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
13
PANet network design.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
14
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
15
-
16
Comparisons between ADAM and NADAM optimizers.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
17
BiFPN network design.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
18
-
19
Design variables and range of values.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
20
Feasibility diagram of design points.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”