يعرض 21 - 40 نتائج من 91 نتيجة بحث عن '(( final sample design optimization algorithm ) OR ( binary data encoding optimization algorithm ))', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 21

    Image_4_UWB indoor positioning optimization algorithm based on genetic annealing and clustering analysis.jpg حسب Hua Guo (305546)

    منشور في 2022
    "…An optimization algorithm for indoor ultra-wideband (UWB) positioning was designed, which was referred as annealing evolution and clustering fusion optimization algorithm. …"
  2. 22
  3. 23
  4. 24
  5. 25
  6. 26
  7. 27
  8. 28
  9. 29

    Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures حسب Hongpeng He (348094)

    منشور في 2021
    "…This study is devoted to develop a quantitative structure–property relationship model for predicting the <i>T</i><sub>d</sub>,<sub>5%onset</sub> of binary imidazolium IL mixtures. Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. …"
  10. 30

    Train stopping plan. حسب Jing Xu (15337)

    منشور في 2024
    "…To solve this optimization model, a multi-level optimization algorithm is designed. …"
  11. 31

    Major notations. حسب Jing Xu (15337)

    منشور في 2024
    "…To solve this optimization model, a multi-level optimization algorithm is designed. …"
  12. 32

    S1 File - حسب Jing Xu (15337)

    منشور في 2024
    "…To solve this optimization model, a multi-level optimization algorithm is designed. …"
  13. 33
  14. 34
  15. 35

    Image 1_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif حسب Tingkai Hou (21014762)

    منشور في 2025
    "…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …"
  16. 36

    Image 2_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif حسب Tingkai Hou (21014762)

    منشور في 2025
    "…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …"
  17. 37
  18. 38

    Smart metering and energy access programs: an approach to energy poverty reduction in sub-Saharan Africa حسب Bennour Bacar (14761288)

    منشور في 2023
    "…</li> </ul> <p><strong>HRES analysis and optimization (5)</strong></p> <ul> <li>The figures (PNG, JPG, PDF) include:</li> </ul> <p>           - Household load, based on the energy data from the smart metering experiment and the machine learning exercise</p> <p>           - Pre-defined/synthetic load, provided by the software when no external data (household load) is available, and</p> <p>           - The HRES designed</p> <p>           - Application-generated reports with the results of the analysis, for both best case HRES and fully renewable scenarios.…"
  19. 39

    Thesis-RAMIS-Figs_Slides حسب Felipe Santibañez-Leal (10967991)

    منشور في 2024
    "…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
  20. 40

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"