Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
final sample » fecal samples (Expand Search), total sample (Expand Search)
sample wolf » sample could (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
final sample » fecal samples (Expand Search), total sample (Expand Search)
sample wolf » sample could (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
-
1
-
2
-
3
-
4
Table2_A Gray Wolf Optimization-Based Improved Probabilistic Neural Network Algorithm for Surrounding Rock Squeezing Classification in Tunnel Engineering.DOCX
Published 2022“…The spread coefficient was the critical hyper-parameter in the PNN, and the improved gray wolf optimization (IGWO) algorithm was used to realize its efficient automatic optimization. …”
-
5
Table1_A Gray Wolf Optimization-Based Improved Probabilistic Neural Network Algorithm for Surrounding Rock Squeezing Classification in Tunnel Engineering.DOCX
Published 2022“…The spread coefficient was the critical hyper-parameter in the PNN, and the improved gray wolf optimization (IGWO) algorithm was used to realize its efficient automatic optimization. …”
-
6
Image 1_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif
Published 2025“…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …”
-
7
Image 2_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif
Published 2025“…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …”
-
8
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
-
9
-
10
-
11
-
12
-
13
-
14
-
15
Classification baseline performance.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
16
Feature selection results.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
17
ANOVA test result.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
18
Summary of literature review.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
19
-
20
Hierarchical clustering to infer a binary tree with <i>K</i> = 4 sampled populations.
Published 2023“…After <i>K</i> − 2 = 2 steps, the resulting tree is binary and the algorithm stops.</p>…”