Search alternatives:
design optimization » bayesian optimization (Expand Search)
code optimization » codon optimization (Expand Search), model optimization (Expand Search), dose optimization (Expand Search)
final sampling » final sample (Expand Search), field sampling (Expand Search), edna sampling (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
design optimization » bayesian optimization (Expand Search)
code optimization » codon optimization (Expand Search), model optimization (Expand Search), dose optimization (Expand Search)
final sampling » final sample (Expand Search), field sampling (Expand Search), edna sampling (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
-
41
YOLOv8n network architecture diagram.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
42
Radar parameters.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
43
Confusion matrix of the improved model.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
44
Improved network structure of the YOLOv8n model.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
45
Plot of improved model output results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
46
Results of ablation experiments.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
47
Image of the ReLU function.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
48
Plot of baseline model output results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
49
Comparative test results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
50
Recall results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
51
mAP@0.5:0.95 results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
52
Precision results.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
53
SimConv structure.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
54
Table of training hyperparameters.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
55
Diagram of the original model confusion matrix.
Published 2025“…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
-
56
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
57
Orthogonal experiment scheme and results.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
58
Comparison of precision of various proxy models.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
59
Comparison between actual and predicted values.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
-
60
Three-dimensional heat transfer model parameters.
Published 2024“…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”