بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
final target » viral target (توسيع البحث), single target (توسيع البحث), visual target (توسيع البحث)
target model » target dose (توسيع البحث)
binary basic » binary mask (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
final target » viral target (توسيع البحث), single target (توسيع البحث), visual target (توسيع البحث)
target model » target dose (توسيع البحث)
binary basic » binary mask (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
Experimental comparisons of single category indexes under different algorithms.
منشور في 2021الموضوعات: -
6
Hyperparameter optimization results.
منشور في 2025"…In this study, the hybrid model CMNS-YOLO, which combines the crawfish optimization algorithm with the MNS-YOLO model, is proposed to achieve the ultimate detection accuracy. …"
-
7
-
8
Comparison of annotation precision for single category labels using different algorithms.
منشور في 2021الموضوعات: -
9
ROC and PR curve of the final model trained using the complete training set.
منشور في 2022الموضوعات: -
10
-
11
-
12
-
13
-
14
General structure of COA optimized MNS-YOLO.
منشور في 2025"…In this study, the hybrid model CMNS-YOLO, which combines the crawfish optimization algorithm with the MNS-YOLO model, is proposed to achieve the ultimate detection accuracy. …"
-
15
-
16
Model comparison experiment.
منشور في 2025"…In this study, the hybrid model CMNS-YOLO, which combines the crawfish optimization algorithm with the MNS-YOLO model, is proposed to achieve the ultimate detection accuracy. …"
-
17
Performance of COA on different models.
منشور في 2025"…In this study, the hybrid model CMNS-YOLO, which combines the crawfish optimization algorithm with the MNS-YOLO model, is proposed to achieve the ultimate detection accuracy. …"
-
18
-
19
-
20
I-NSGA-II-RF algorithm.
منشور في 2023"…The integrated information initialization population of two filtered feature selection methods is used to optimize the I-NSGA-II algorithm, using multiple chromosome hybrid coding to synchronously select features and optimize model parameters. …"