Showing 141 - 160 results of 261 for search '(( final whole process optimization algorithm ) OR ( binary based based optimization algorithm ))', query time: 0.56s Refine Results
  1. 141
  2. 142
  3. 143
  4. 144

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  5. 145

    the functioning of BRPSO. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  6. 146

    Characteristic of 6- and 10-story SMRF [99,98]. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  7. 147

    The RFD’s behavior mechanism (2002). by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  8. 148
  9. 149
  10. 150

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  11. 151

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  12. 152

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  13. 153

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  14. 154

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  15. 155

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  16. 156
  17. 157

    Structures of swin transformer block. by Ruikang Xu (18778060)

    Published 2024
    “…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
  18. 158

    Pest dataset details. by Ruikang Xu (18778060)

    Published 2024
    “…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
  19. 159

    Data augmentation. by Ruikang Xu (18778060)

    Published 2024
    “…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
  20. 160

    Original and expanded datasets explained. by Ruikang Xu (18778060)

    Published 2024
    “…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”