Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
whole » while (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
whole » while (Expand Search)
-
141
-
142
-
143
-
144
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
145
the functioning of BRPSO.
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
146
Characteristic of 6- and 10-story SMRF [99,98].
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
147
The RFD’s behavior mechanism (2002).
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
148
-
149
-
150
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
151
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
152
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
153
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
154
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
155
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
156
-
157
Structures of swin transformer block.
Published 2024“…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
-
158
Pest dataset details.
Published 2024“…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
-
159
Data augmentation.
Published 2024“…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”
-
160
Original and expanded datasets explained.
Published 2024“…Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN’s cascade structure into the optimization process to ensure more accurate and reliable prediction results. …”