بدائل البحث:
process optimization » model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
whole » while (توسيع البحث)
process optimization » model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
whole » while (توسيع البحث)
-
1
-
2
S1 Data -
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
3
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
4
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
5
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
6
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
7
Flowchart of GJO-GWO algorithm.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
8
Detailed information of benchmark functions.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
9
Evaluation metrics of the models’ performance.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
10
Detailed information of datasets.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
11
Friedman test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
12
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
13
Wilcoxon rank sum test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
14
Wilcoxon rank sum test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
15
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
16
Coarse-fine optimization algorithm.
منشور في 2025"…To improve the focusing efficiency and optimize the focusing process, a search strategy combining a climbing search algorithm and a traversal method was proposed. …"
-
17
-
18
-
19
Material parameters.
منشور في 2023"…The impact of detection probability and maintenance measures on the service life of tunnel lining and the cost of detection and maintenance of cracked lining in the whole life cycle was analyzed; the optimization calculation model of tunnel lining crack detection and maintenance strategy based on genetic algorithm was established with the multi-objective optimization function of maximizing the service life of detection and maintenance and minimizing the total cost of detection and maintenance of fatigue cracks. …"
-
20
S1 File -
منشور في 2023"…The impact of detection probability and maintenance measures on the service life of tunnel lining and the cost of detection and maintenance of cracked lining in the whole life cycle was analyzed; the optimization calculation model of tunnel lining crack detection and maintenance strategy based on genetic algorithm was established with the multi-objective optimization function of maximizing the service life of detection and maintenance and minimizing the total cost of detection and maintenance of fatigue cracks. …"