Search alternatives:
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
five teer » five test (Expand Search)
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
five teer » five test (Expand Search)
-
1
-
2
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
3
-
4
-
5
-
6
Data Sheet 1_Emotional prompting amplifies disinformation generation in AI large language models.docx
Published 2025“…Introduction<p>The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. …”
-
7
The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER.
Published 2025“…PS decreased TEER. (C) Different treatments (treatment groups n = 8)with HA and/or CS did not affect TEER recovery after PS treatment, full recovery was seen in all groups after 24 hours. …”
-
8
-
9
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
10
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
11
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
12
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
13
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
14
-
15
-
16
-
17
-
18
-
19
-
20